Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Lancet Glob Health ; 12(5): e815-e825, 2024 May.
Article in English | MEDLINE | ID: mdl-38614630

ABSTRACT

BACKGROUND: Household air pollution might lead to fetal growth restriction during pregnancy. We aimed to investigate whether a liquefied petroleum gas (LPG) intervention to reduce personal exposures to household air pollution during pregnancy would alter fetal growth. METHODS: The Household Air Pollution Intervention Network (HAPIN) trial was an open-label randomised controlled trial conducted in ten resource-limited settings across Guatemala, India, Peru, and Rwanda. Pregnant women aged 18-34 years (9-19 weeks of gestation) were randomly assigned in a 1:1 ratio to receive an LPG stove, continuous fuel delivery, and behavioural messaging or to continue usual cooking with biomass for 18 months. We conducted ultrasound assessments at baseline, 24-28 weeks of gestation (the first pregnancy visit), and 32-36 weeks of gestation (the second pregnancy visit), to measure fetal size; we monitored 24 h personal exposures to household air pollutants during these visits; and we weighed children at birth. We conducted intention-to-treat analyses to estimate differences in fetal size between the intervention and control group, and exposure-response analyses to identify associations between household air pollutants and fetal size. This trial is registered with ClinicalTrials.gov (NCT02944682). FINDINGS: Between May 7, 2018, and Feb 29, 2020, we randomly assigned 3200 pregnant women (1593 to the intervention group and 1607 to the control group). The mean gestational age was 14·5 (SD 3·0) weeks and mean maternal age was 25·6 (4·5) years. We obtained ultrasound assessments in 3147 (98·3%) women at baseline, 3052 (95·4%) women at the first pregnancy visit, and 2962 (92·6%) at the second pregnancy visit, through to Aug 25, 2020. Intervention adherence was high (the median proportion of days with biomass stove use was 0·0%, IQR 0·0-1·6) and pregnant women in the intervention group had lower mean exposures to particulate matter with a diameter less than 2·5 µm (PM2·5; 35·0 [SD 37·2] µg/m3vs 103·3 [97·9] µg/m3) than did women in the control group. We did not find differences in averaged post-randomisation Z scores for head circumference (0·30 vs 0·39; p=0·04), abdominal circumference (0·38 vs 0·39; p=0·99), femur length (0·44 vs 0·45; p=0·73), and estimated fetal weight or birthweight (-0·13 vs -0·12; p=0·70) between the intervention and control groups. Personal exposures to household air pollutants were not associated with fetal size. INTERPRETATION: Although an LPG cooking intervention successfully reduced personal exposure to air pollution during pregnancy, it did not affect fetal size. Our findings do not support the use of unvented liquefied petroleum gas stoves as a strategy to increase fetal growth in settings were biomass fuels are used predominantly for cooking. FUNDING: US National Institutes of Health and Bill & Melinda Gates Foundation. TRANSLATIONS: For the Kinyarwanda, Spanish and Tamil translations of the abstract see Supplementary Materials section.


Subject(s)
Air Pollutants , Fetal Development , Pregnancy , United States , Infant, Newborn , Child , Humans , Female , Male , Biomass , India , Cooking
2.
N Engl J Med ; 390(1): 32-43, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38169488

ABSTRACT

BACKGROUND: Exposure to household air pollution is a risk factor for severe pneumonia. The effect of replacing biomass cookstoves with liquefied petroleum gas (LPG) cookstoves on the incidence of severe infant pneumonia is uncertain. METHODS: We conducted a randomized, controlled trial involving pregnant women 18 to 34 years of age and between 9 to less than 20 weeks' gestation in India, Guatemala, Peru, and Rwanda from May 2018 through September 2021. The women were assigned to cook with unvented LPG stoves and fuel (intervention group) or to continue cooking with biomass fuel (control group). In each trial group, we monitored adherence to the use of the assigned cookstove and measured 24-hour personal exposure to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm [PM2.5]) in the women and their offspring. The trial had four primary outcomes; the primary outcome for which data are presented in the current report was severe pneumonia in the first year of life, as identified through facility surveillance or on verbal autopsy. RESULTS: Among 3200 pregnant women who had undergone randomization, 3195 remained eligible and gave birth to 3061 infants (1536 in the intervention group and 1525 in the control group). High uptake of the intervention led to a reduction in personal exposure to PM2.5 among the children, with a median exposure of 24.2 µg per cubic meter (interquartile range, 17.8 to 36.4) in the intervention group and 66.0 µg per cubic meter (interquartile range, 35.2 to 132.0) in the control group. A total of 175 episodes of severe pneumonia were identified during the first year of life, with an incidence of 5.67 cases per 100 child-years (95% confidence interval [CI], 4.55 to 7.07) in the intervention group and 6.06 cases per 100 child-years (95% CI, 4.81 to 7.62) in the control group (incidence rate ratio, 0.96; 98.75% CI, 0.64 to 1.44; P = 0.81). No severe adverse events were reported to be associated with the intervention, as determined by the trial investigators. CONCLUSIONS: The incidence of severe pneumonia among infants did not differ significantly between those whose mothers were assigned to cook with LPG stoves and fuel and those whose mothers were assigned to continue cooking with biomass stoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Subject(s)
Air Pollution, Indoor , Biomass , Cooking , Inhalation Exposure , Petroleum , Pneumonia , Female , Humans , Infant , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Cooking/methods , Particulate Matter/adverse effects , Particulate Matter/analysis , Petroleum/adverse effects , Pneumonia/etiology , Adolescent , Young Adult , Adult , Internationality , Inhalation Exposure/adverse effects , Inhalation Exposure/analysis , Maternal Exposure/adverse effects , Prenatal Exposure Delayed Effects/etiology
3.
N Engl J Med ; 390(1): 44-54, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38169489

ABSTRACT

BACKGROUND: Household air pollution is associated with stunted growth in infants. Whether the replacement of biomass fuel (e.g., wood, dung, or agricultural crop waste) with liquefied petroleum gas (LPG) for cooking can reduce the risk of stunting is unknown. METHODS: We conducted a randomized trial involving 3200 pregnant women 18 to 34 years of age in four low- and middle-income countries. Women at 9 to less than 20 weeks' gestation were randomly assigned to use a free LPG cookstove with continuous free fuel delivery for 18 months (intervention group) or to continue using a biomass cookstove (control group). The length of each infant was measured at 12 months of age, and personal exposures to fine particulate matter (particles with an aerodynamic diameter of ≤2.5 µm) were monitored starting at pregnancy and continuing until the infants were 1 year of age. The primary outcome for which data are presented in the current report - stunting (defined as a length-for-age z score that was more than two standard deviations below the median of a growth standard) at 12 months of age - was one of four primary outcomes of the trial. Intention-to-treat analyses were performed to estimate the relative risk of stunting. RESULTS: Adherence to the intervention was high, and the intervention resulted in lower prenatal and postnatal 24-hour personal exposures to fine particulate matter than the control (mean prenatal exposure, 35.0 µg per cubic meter vs. 103.3 µg per cubic meter; mean postnatal exposure, 37.9 µg per cubic meter vs. 109.2 µg per cubic meter). Among 3061 live births, 1171 (76.2%) of the 1536 infants born to women in the intervention group and 1186 (77.8%) of the 1525 infants born to women in the control group had a valid length measurement at 12 months of age. Stunting occurred in 321 of the 1171 infants included in the analysis (27.4%) of the infants born to women in the intervention group and in 299 of the 1186 infants included in the analysis (25.2%) of those born to women in the control group (relative risk, 1.10; 98.75% confidence interval, 0.94 to 1.29; P = 0.12). CONCLUSIONS: An intervention strategy starting in pregnancy and aimed at mitigating household air pollution by replacing biomass fuel with LPG for cooking did not reduce the risk of stunting in infants. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Subject(s)
Air Pollution, Indoor , Petroleum , Infant , Female , Humans , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Biomass , Particulate Matter/adverse effects , Particulate Matter/analysis , Cooking , Growth Disorders/epidemiology , Growth Disorders/etiology , Growth Disorders/prevention & control
4.
Lancet Planet Health ; 7(5): e387-e396, 2023 05.
Article in English | MEDLINE | ID: mdl-37164515

ABSTRACT

BACKGROUND: Household air pollution (HAP) from solid fuel use is associated with adverse birth outcomes, but data for exposure-response relationships are scarce. We examined associations between HAP exposures and birthweight in rural Guatemala, India, Peru, and Rwanda during the Household Air Pollution Intervention Network (HAPIN) trial. METHODS: The HAPIN trial recruited pregnant women (9-<20 weeks of gestation) in rural Guatemala, India, Peru, and Rwanda and randomly allocated them to receive a liquefied petroleum gas stove or not (ie, and continue to use biomass fuel). The primary outcomes were birthweight, length-for-age, severe pneumonia, and maternal systolic blood pressure. In this exposure-response subanalysis, we measured 24-h personal exposures to PM2·5, carbon monoxide, and black carbon once pre-intervention (baseline) and twice post-intervention (at 24-28 weeks and 32-36 weeks of gestation), as well as birthweight within 24 h of birth. We examined the relationship between the average prenatal exposure and birthweight or weight-for-gestational age Z scores using multivariate-regression models, controlling for the mother's age, nulliparity, diet diversity, food insecurity, BMI, the mother's education, neonate sex, haemoglobin, second-hand smoke, and geographical indicator for randomisation strata. FINDINGS: Between March, 2018, and February, 2020, 3200 pregnant women were recruited. An interquartile increase in the average prenatal exposure to PM2·5 (74·5 µg/m3) was associated with a reduction in birthweight and gestational age Z scores (birthweight: -14·8 g [95% CI -28·7 to -0·8]; gestational age Z scores: -0·03 [-0·06 to 0·00]), as was an interquartile increase in black carbon (7·3 µg/m3; -21·9 g [-37·7 to -6·1]; -0·05 [-0·08 to -0·01]). Carbon monoxide exposure was not associated with these outcomes (1·7; -3·1 [-12·1 to 5·8]; -0·003 [-0·023 to 0·017]). INTERPRETATION: Continuing efforts are needed to reduce HAP exposure alongside other drivers of low birthweight in low-income and middle-income countries. FUNDING: US National Institutes of Health (1UM1HL134590) and the Bill & Melinda Gates Foundation (OPP1131279).


Subject(s)
Air Pollution, Indoor , Air Pollution , Prenatal Exposure Delayed Effects , United States , Infant, Newborn , Female , Humans , Pregnancy , Carbon Monoxide/adverse effects , Carbon Monoxide/analysis , Particulate Matter/adverse effects , Particulate Matter/analysis , Birth Weight , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/prevention & control , Air Pollution, Indoor/analysis , Cooking , Air Pollution/adverse effects , Air Pollution/prevention & control , Soot
5.
Ultrasound Med Biol ; 49(5): 1194-1201, 2023 05.
Article in English | MEDLINE | ID: mdl-36801180

ABSTRACT

OBJECTIVE: Lung ultrasound (LUS) is an alternative to chest radiography to confirm a diagnosis of pneumonia. For research and disease surveillance, methods to use LUS to diagnose pneumonia are needed. METHODS: In the Household Air Pollution Intervention Network (HAPIN) trial, LUS was used to confirm a clinical diagnosis of severe pneumonia in infants. We developed a standardized definition of pneumonia, protocols for recruitment and training of sonographers, along with LUS image acquisition and interpretation. We use a blinded panel approach to interpretation with LUS cine-loops randomized to non-scanning sonographers with expert review. DISCUSSION: We obtained 357 lung ultrasound scans: 159, 8 and 190 scans were collected in Guatemala, Peru and Rwanda, respectively. The diagnosis of primary endpoint pneumonia (PEP) required an expert tie breaker in 181 scans (39%). PEP was diagnosed in 141 scans (40%), not diagnosed in 213 (60%), with 3 scans (<1%) deemed uninterpretable. Agreement among the two blinded sonographers and the expert reader in Guatemala, Peru and Rwanda was 65%, 62% and 67%, with a prevalence-and-bias-corrected kappa of 0.30, 0.24 and 0.33, respectively. CONCLUSION: Use of standardized imaging protocols, training and an adjudication panel resulted in high confidence for the diagnosis of pneumonia using LUS.


Subject(s)
Air Pollution , Pneumonia , Infant , Humans , Lung/diagnostic imaging , Thorax , Ultrasonography/methods , Quality Control , Randomized Controlled Trials as Topic
6.
N Engl J Med ; 387(19): 1735-1746, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36214599

ABSTRACT

BACKGROUND: Exposure during pregnancy to household air pollution caused by the burning of solid biomass fuel is associated with adverse health outcomes, including low birth weight. Whether the replacement of a biomass cookstove with a liquefied petroleum gas (LPG) cookstove would result in an increase in birth weight is unclear. METHODS: We performed a randomized, controlled trial involving pregnant women (18 to <35 years of age and at 9 to <20 weeks' gestation as confirmed on ultrasonography) in Guatemala, India, Peru, and Rwanda. The women were assigned in a 1:1 ratio to use a free LPG cookstove and fuel (intervention group) or to continue using a biomass cookstove (control group). Birth weight, one of four prespecified primary outcomes, was the primary outcome for this report; data for the other three outcomes are not yet available. Birth weight was measured within 24 hours after birth. In addition, 24-hour personal exposures to fine particulate matter (particles with a diameter of ≤2.5 µm [PM2.5]), black carbon, and carbon monoxide were measured at baseline and twice during pregnancy. RESULTS: A total of 3200 women underwent randomization; 1593 were assigned to the intervention group, and 1607 to the control group. Uptake of the intervention was nearly complete, with traditional biomass cookstoves being used at a median rate of less than 1 day per month. After randomization, the median 24-hour personal exposure to fine particulate matter was 23.9 µg per cubic meter in the intervention group and 70.7 µg per cubic meter in the control group. Among 3061 live births, a valid birth weight was available for 94.9% of the infants born to women in the intervention group and for 92.7% of infants born to those in the control group. The mean (±SD) birth weight was 2921±474.3 g in the intervention group and 2898±467.9 g in the control group, for an adjusted mean difference of 19.6 g (95% confidence interval, -10.1 to 49.2). CONCLUSIONS: The birth weight of infants did not differ significantly between those born to women who used LPG cookstoves and those born to women who used biomass cookstoves. (Funded by the National Institutes of Health and the Bill and Melinda Gates Foundation; HAPIN ClinicalTrials.gov number, NCT02944682.).


Subject(s)
Air Pollution, Indoor , Birth Weight , Cooking , Particulate Matter , Petroleum , Female , Humans , Pregnancy , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Biomass , Cooking/methods , Particulate Matter/adverse effects , Particulate Matter/analysis , Petroleum/adverse effects , Petroleum/analysis , Infant, Newborn , Adolescent , Young Adult , Adult
7.
Environ Res ; 214(Pt 4): 114121, 2022 11.
Article in English | MEDLINE | ID: mdl-36029836

ABSTRACT

Elevated blood pressure (BP) is a leading risk factor for the global burden of disease. Household air pollution (HAP), resulting from the burning of biomass fuels, may be an important cause of elevated BP in resource-poor communities. We examined the exposure-response relationship of personal exposures to HAP -fine particulate matter (PM2.5), carbon monoxide (CO), and black carbon (BC) - with BP measures in women aged 40-79 years across four resource-poor settings in Guatemala, Peru, India and Rwanda. BP was obtained within a day of 24-h personal exposure measurements at baseline, when participants were using biomass for cooking. We used generalized additive models to characterize the shape of the association between BP and HAP, accounting for the interaction of personal exposures and age and adjusting for a priori identified confounders. A total of 418 women (mean age 52.2 ± 7.9 years) were included in this analysis. The interquartile range of exposures to PM2.5 was 42.9-139.5 µg/m3, BC was 6.4-16.1 µg/m3, and CO was 0.5-2.9 ppm. Both SBP and PP were positively associated with PM2.5 exposure in older aged women, achieving statistical significance around 60 years of age. The exact threshold varied by BP measure and PM2.5 exposures being compared. For example, SBP of women aged 65 years was on average 10.8 mm Hg (95% CI 1.0-20.6) higher at 232 µg/m3 of PM2.5 exposure (90th percentile) when compared to that of women of the same age with personal exposures of 10 µg/m3. PP in women aged 65 years was higher for exposures ≥90 µg/m3, with mean differences of 6.1 mm Hg (95% CI 1.8-10.5) and 9.2 mm Hg (95% CI 3.3-15.1) at 139 (75th percentile) and 232 µg/m3 (90th percentile) respectively, when compared to that of women of the same age with PM2.5 exposures of 10 µg/m3. Our findings suggest that reducing HAP exposures may help to reduce BP, particularly among older women.


Subject(s)
Air Pollution, Indoor , Environmental Exposure , Hypertension , Adult , Aged , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Blood Pressure , Cooking , Cross-Sectional Studies , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Female , Humans , Hypertension/epidemiology , Middle Aged , Particulate Matter/analysis , Soot
8.
Environ Res ; 208: 112756, 2022 05 15.
Article in English | MEDLINE | ID: mdl-35065931

ABSTRACT

BACKGROUND: The Household Air Pollution Intervention Network (HAPIN) trial is an ongoing multi-center randomized controlled trial assessing the impact of a liquified petroleum gas (LPG) cookstove and fuel intervention on health. Given the potential impacts of household air pollution (HAP) exposure from burning solid fuels on cardiovascular health during pregnancy, we sought to determine whether baseline exposures to particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5), black carbon (BC) and carbon monoxide (CO) were associated with blood pressure among 799 pregnant women in Tamil Nadu, India, one of the HAPIN trial centers. METHODS: Multivariable linear regression models were used to examine the association between 24-h personal exposure to PM2.5/BC/CO and systolic and diastolic blood pressure, controlling for maternal age, body mass index (BMI), mother's education, household wealth, gestational age, and season. At the time of measurement, women were between 9- and 20-weeks of gestation. RESULTS: We found that systolic blood pressure (SBP) and diastolic blood pressure (DBP) were higher in pregnant women exposed to higher levels of HAP, though only the result for CO and DBP reached conventional statistical significance (p < 0.05). We observed a positive association between CO and DBP among the entire study cohort: a 1-log µg/m3 increase in CO exposure was associated with 0.36 mmHg higher DBP (95% confidence interval [CI]: 0.02 to 0.70). The effect was stronger in pregnant women with higher CO exposures (in the 3rd [≥ 0.9 and < 2.1 ppm] and 4th quartiles [≥ 2.1 and ≤ 46.9 ppm]). We also found that pregnant women with PM2.5 exposures in the highest quartile (≥ 129.9 and ≤ 2100 µg/m3) had a borderline significant association (p = 0.054) with DBP compared to those who had PM2.5 exposures in the lowest quartile (≥ 9.4 and < 47.7 µg/m3). No evidence of association was observed for BC exposure and blood pressure. CONCLUSION: This study contributes to limited evidence regarding the relationship between HAP exposure and blood pressure among women during pregnancy, a critical window for both mother and child's life-course health. Results from this cross-sectional study suggest that exposures to PM2.5 and CO from solid fuel use are associated with higher blood pressure in pregnant women during their first or second trimester.


Subject(s)
Air Pollution, Indoor , Blood Pressure , Cooking , Maternal Exposure , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution, Indoor/adverse effects , Air Pollution, Indoor/analysis , Blood Pressure/physiology , Carbon Monoxide/analysis , Carbon Monoxide/toxicity , Cooking/methods , Cross-Sectional Studies , Female , Gestational Age , Humans , Hypertension/chemically induced , Hypertension/epidemiology , India/epidemiology , Maternal Exposure/adverse effects , Maternal Exposure/statistics & numerical data , Particulate Matter/analysis , Particulate Matter/toxicity , Pregnancy , Pregnancy Complications, Cardiovascular/chemically induced , Pregnancy Complications, Cardiovascular/epidemiology , Rural Health/statistics & numerical data
9.
J Vis Exp ; (190)2022 12 23.
Article in English | MEDLINE | ID: mdl-36622010

ABSTRACT

Here, we present a visual representation of standard procedures to collect population-level data on personal exposures to household air pollution (HAP) from two different study sites in a resource-constrained setting of Tamil Nadu, India. Particulate matter PM2.5 (particles smaller than 2.5 microns in aerodynamic diameter), carbon monoxide (CO), and black carbon (BC) were measured in pregnant mothers (M), other adult women (OAW), and children (C) at various times over a 4 year period. In addition, stove usage monitoring (SUMs) with data-logging thermometers and ambient measurements of air pollution were carried out. Furthermore, the feasibility of collecting biological samples (urine and dried blood spots [DBSs]) from study participants at the field sites was successfully demonstrated. Based on findings from this and earlier studies, the methods used here have enhanced the data quality and avoided issues with household air pollution and biological sample collection in resource-constrained situations. The procedures established may be a valuable educational tool and resource for researchers conducting similar air pollution and health studies in India and other low- and middle-income countries (LMICs).


Subject(s)
Air Pollutants , Air Pollution , Adult , Child , Pregnancy , Humans , Female , Air Pollutants/analysis , Environmental Exposure/analysis , India , Particulate Matter/analysis , Data Collection
10.
Environ Res ; 129: 20-6, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24528998

ABSTRACT

BACKGROUND: Combined sewers are a significant source of urban water pollution due to periodic discharges into natural streams. Such events (called combined sewer overflows, or CSOs) contribute to the impairment of natural waterways and are associated with increased mosquito productivity and elevated risk of West Nile virus transmission. OBJECTIVES: We investigated the impact of CSOs on water quality and immature mosquito productivity in the city of Atlanta, Georgia, one year before and four years after CSO facility remediation. METHODS: Water quality (ammonia, phosphate, nitrate and dissolved oxygen concentrations), immature mosquitoes (larvae and pupae), water temperature and rainfall were quantified biweekly between June-October at two urban creeks during 2008-2012. A before-after control-intervention design tested the impact of remediation on mosquito productivity and water quality, whereas generalized linear mixed-effect models quantified the factors explaining the long term impacts of remediation on mosquito productivity. RESULTS: Ammonia and phosphate concentrations and late immature (fourth-instar and pupae) mosquito populations were significantly higher in CSO than in non-CSO creeks, while dissolved oxygen concentrations were lower. Remediation significantly improved water quality estimates (particularly ammonia and dissolved oxygen) and reduced the number of overflows, mosquito productivity and the overall contribution of CSO-affected streams as sources of vectors of West Nile virus. CONCLUSIONS: The quality of water in CSOs provided a suitable habitat for immature mosquitoes. Remediation of the CSO facility through the construction of a deep storage tunnel improved water quality indices and reduced the productivity of mosquito species that can serve as vectors of West Nile virus.


Subject(s)
Culex/virology , Environmental Restoration and Remediation/methods , Insect Vectors , Sewage/analysis , Water Quality/standards , West Nile virus/physiology , Animals , Culex/growth & development , Environmental Monitoring , Georgia/epidemiology , Models, Biological , Mosquito Control , Population Dynamics , Sewage/virology , Urban Population , West Nile Fever/epidemiology , West Nile Fever/prevention & control , West Nile Fever/transmission , West Nile virus/growth & development , West Nile virus/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...